• b9b8-最好的免费学习资料站!请记住我们的网址:www.b9b8.com
您当前位置: b9b8学习网文章资讯免费教案数学教案数学说课稿《反函数》说课

《反函数》说课

日期:04-06 16:14:01|b9b8学习网| http://www.b9b8.com |数学说课稿|人气:164

《反函数》说课,本站还有更多关于数学说课稿,小学数学说课教案,数学说课课件,高中数学说课视频,数学说课视频,小学数学说课相关的资料。www.b9b8.com

《反函数》说课  说课内容:《高中代数》(必修本)上册第1.11节一、说教材1、地位与重要性     “反函数”一节课是《高中代数》第一册的重要内容。这一节课与函数的基本概念有着紧密的联系,通过对这一节课的学习,既可以让学生接受、理解反函数的概念并学会反函数的求法,又可使学生加深对函数基本概念的理解,还为日后反三角函数的教学做好准备,起到承上启下的重要作用。    2、教学目标     (1)使学生接受、理解反函数的概念,并能判定一个函数是否存在反函数;  (2)使学生能够求出指定函数的反函数,并能理解原函数和反函数之间的内在联系;  (3)培养学生发现问题、观察问题、解决问题的能力;  (4)使学生树立对立统一的辩证思维观点。  3、教学重难点    重点是反函数的概念及反函数的求法。理解反函数概念并求出函数的反函数是高一代数教学的重要内容,这建立在对函数概念的真正理解的基础上,必须使学生对于函数的基本概念有清醒的认识。    难点是反函数概念的接受与理解。学生对于反函数的来历、反函数与原函数间的关系都容易产生错误的认识,必须使学生认清反函数的实质就是函数这一本质问题,才能使学生接受概念并对反函数的存在有正确的认识。教学中复习函数概念,进而引出反函数概念,就是为突破难点做准备。二、说教法根据本节课的内容及学生的实际水平,我采取引导发现式教学方法并充分发挥电脑多媒体的辅助教学作用。引导发现法作为一种启发式教学方法,体现了认知心理学的基本理论。教学过程中,教师采用点拨的方法,启发学生通过主动思考、动手操作来达到对知识的“发现”和接受,进而完成知识的内化,使书本的知识成为自己的知识。课堂不再成为“一言堂”,学生也不会变成教师注入知识的“容器”。电脑多媒体以声音、动画、影像等多种形式强化对学生感观的刺激,这一点是粉笔和黑板所不能比拟的,采取这种形式,可以极大提高学生的学习兴趣,加大一堂课的信息容量,使教学目标更完美地体现。另外,电脑软件具有良好的交互性,可以将教师的思路和策略以软件的形式来体现,更好地为教学服务。三、说学法 “授人以鱼,不如授人以渔”,在教学过程中,不但要传授学生课本知识,还要培养学生主动观察、主动思考、自我发现的学习能力,增强学生的综合素质,从而达到教学的终极目标。教学中,教师创设疑问,学生想办法解决疑问,通过教师的启发点拨,在积极的双边活动中,学生找到了解决疑难的方法。整个过程贯穿“怀疑”——“思索”——“发现”——“解惑”四个环节,学生随时对所学知识产生有意注意,思想上经历了从肯定到否定、又从否定到肯定的辨证思维过程,符合学生认知水平,培养了学习能力。四、说过程在新课导入、新课讲授及终结阶段的教学中,我力求发挥学生自我发现的能力,突出学生的教学主体地位,以启发、引导为教师的责任。一、新课导入首先,在导入阶段的教学中,抓住反函数也是函数这一实质,以对函数概念的复习来引出反函数。指明函数是一种映射的实质,分析原函数中映射的具体情况,进而引导学生考虑,若将定义域、值域互换,此时映射还是不是一个函数呢?首先提问学生函数基本概念,使学生明白函数是一种单值对应,即映射。再出示电脑动画,以函数y=2x来具体分析,结合图象引导学生注意:在定义域内所有自变量,都能在值域内找到唯一确定的一个函数值,即存在x→y的单值对应,例如:1→2,2→4,3→6,……若将定义域与值域互换,则对应变为2→1,4→2,6→3,…这种对应是否构成单值对应,即映射呢?这种对应是否构成函数呢?至此,引出反函数的概念,为概念的新授做好准备。这样的引入方式,抓住了反函数概念的实质,确保学生不会产生概念上的偏差。此外,可以使学生明白新知识来源于旧知识,促使学生主动运用函数的研究方法去学习反函数,为顺利完成教学任务做好思维上的准备。二、新课讲授在导入的基础上,给出反函数的具体概念。给出概念后,必须防止学生对于反函数f-1(y)形式的误解(以为是1/f(x))。此外,还要学生理解:最终的表达形式写为y=f-1(x)是顺应习惯,并且也为后面的图象研究提供方便,y实际上是原函数中的x,x是原函数中的y。对于这一问题可以引导学生从图象观察得出。进一步深化对概念的理解,出示电脑幻灯,设置疑问:(1)反函数是不是函数;(2)反函数有没有三要素?如何确定?引导学生思索,学生逐渐会认识到:反函数也是函数,其定义域是原函数的值域,对应法则可由原函数得到,值域则是原函数的定义域。这时,给出电脑动画,指明反函数与原函数的关系。澄清学生对于概念的认识,抓住问题的关键。但是,具体怎样求一个函数的反函数呢?这些问题,必须通过实例解决,于是进入例题解答过程。例1、  求下列函数的反函数。(1)y=3x-1(x∈R);          (2)y=x3+1;(3)y=(2x+3)/(x-1)(x∈R且x≠1)通过例1,要使学生明白具体求反函数的过程。以达到突出重点、突破难点的目的。启发学生:既然反函数也存在三要素,那如何一一求出,得到具体的反函数呢?这时结合第(1)小题,让学生思考问题。引导学生找出关键     通过解关于x的方程,将x用y表达,以得到反函数的表达式。这个表达式中的x、 y表示什么?这和我们通常的函数表达式有什么区别?进而引导学生想到交换x、 y得到我们习惯使用的函数表达式。再考虑:反函数的定义域、值域怎么求?是怎样来的?学生思考后,可得出通过求原函数值域来得到反函数的定义域的方法。教师板书第(1)小题,学生完成后两题。此时,引导学生比较三道小题的解题步骤,师生共同小结出求反函数的三部曲:反解(把解析式看作x的方程,求出反函数的解析式)--→互换(求出所给函数的值域并把它改换成反函数的定义域)--→改写(将函数写成y=f-1(x)的形式)。教师在这一部分教学中,抓住反函数是函数这一本质问题,突出了反函数与原函数之间的联系,给出了具体求解的过程,使学生掌握了重点问题的解决方法。教师以一个个问题来引导学生逐步“发现”解决问题的方法,符合学生的认知水平。在教师创设的问题情境中,学生的认识达到了第一次平衡。“反函数的概念已经理解,反函数也会求了,任务已基本完成,该休息了”,有的学生会这样想。这时,出示第二道例题,打破平衡,激起学生的疑难。例2、(1)y=x2(x∈R)的反函数                   (2)y=x2(x≥0)的反函数是                  (3)y=x2(x<0)的反函数是             相当一部分同学会按部就班求出第(1)小题的“反函数” y=     (x∈R)。这对不对呢?出示电脑动画,引导学生观察图象,从函数的概念出发,必须存在x→y的单值对应,但反过来呢?y→x存不存在单值对应呢?适当的引导提问,使学生抓住了问题的关键:在原函数的定义域内必须存在y→x的单值对应,这是反函数存在的前提。认清这一问题后,引导学生进一步分析,y=x2(x∈R)不存在反函数,在定义域的局部存不存在反函数呢?让学生借助图形发现答案,并且进一步得出y=x2(x≥0),y=x2(x<0)两个函数的反函数。这样,就突破了主要难点,澄清了概念,并为以后反正弦函数的教学做好理论准备。这样设计的好处是:(1)通过函数图像来研究问题,直观形象,符合学生的认识水平,并且为后续的互为反函数的函数图像关系问题做好铺垫。(2)对于反函数的存在性问题,不能回避,必须使学生理解其内在含义,由具体的二次函数结合图像解决这一问题,可以澄清的学生的疑问,达到教学目标。此时,趁学生对于概念有了一个比较清晰的认识,出示幻灯,从函数概念、反函数的存在性、反函数的求法三方面进行简单的归纳,突出重点,突破难点。三、终结阶段  (一)课堂练习    出示电脑幻灯,让学生完成以下练习:    (1)函数y=2|x|在下列哪个定义区间内不存在反函数? (     )  (A)[2,4];   (B)[-4,4]  (C)(0,+∞]  (D)(-∞,0] (2)求反函数:y=x/(2x+5),(x∈R且x≠-5/3)(3)已知y=         ,x∈[0,5/2],求出它的反函数,并指明定义域。第一道题是概念题,使学生对于反函数的概念有更清晰的认识,使学生对于反函数的存在条件认识更深刻。第二道题使学生熟悉反函数的求法,突出重点。第三道题使学生加深对于概念的理解,弄清反函数与原函数的内在关系。  (二)小结归纳    通过对反函数概念和性质的小结,使学生理清这节课的重难点,并使终结阶段的教学更为完整,达到本堂课的教学目标。让学生做课本P65习题六2、3、5,通过作业反馈学生掌握知识的效果,以利课后解决学生尚有疑难的地方。布置一道发散性的练习(已知函数y=f(x),(x∈A)是增函数,问:反函数y=f-1(x)单调性如何?图象中如何反映?),进一步深化教学。总之,在整个教学过程中,我抓住学生的“主体”作用作文章,不浪费任何一个促使学生“自省”的机会,以积极的双边活动使学生主动自觉地发现结果、发现方法。培养了学生的观察分析能力和思维的全面性。具体教学中,教师创设问题情境,学生在这一情境中去讨论分析、探究发现,以符合学生思维的形式发展了学生的能力,达到了教学目标,优化了整个教学。 附:一、板书设计:

§1.11 反函数一、反函数的概念y=f(x)  =>  x=φ(y)函  数       反函数二、反函数的性质三、反函数的求法(三部曲)四、例题例1、      解: 例二、解: 作业:P65习题六2、3、5    

   如果觉得《反函数》说课不错,可以推荐给好友哦。
本文Tags:免费教案 - 数学教案 - 数学说课稿,小学数学说课教案,数学说课课件,高中数学说课视频,数学说课视频,小学数学说课

相关数学说课稿搜索

+评论

☉本站仅仅提供一个观摩学习的环境,将不对任何资源负法律责任。所有资源请在下载后24小时内删除。如果您觉得满意,请购买正版!

联系本站 - 教案中心 - 试题下载 - 教学反思 - 句子大全 - 收藏本站 - 文章阅读 - 全站地图 - 热门专题